:: 게시판
:: 이전 게시판
|
다시봐도 좋은 양질의 글들을 모아놓는 게시판입니다.
통합규정 1.3 이용안내 인용"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
13/10/17 17:33
사실 축구같은 다이나믹한 스포츠는 육안적 계측보다는, 선수와 공에 표지자를 붙이고 경기 자체를 시뮬레이팅 한 후에 다시 재계측하는 방식을 써야하지 않나 생각합니다. FM의 놀라울 정도의 정확성(..)이 결국 그 시뮬레이팅을 하는 방법에 있지 않나 싶기도 하고요.
13/10/17 17:35
옙. 근데 그를 위해서는 노력과 열정과 에너지와 돈이 '많이'라고 형용하는 것으로는 이물감이 느껴질만큼 막대하게 들어가겠죠 -0-;;
13/10/17 19:04
실제로 맨시티 쪽에서 통계 쪽에 관심을 가지고 관련 인력을 영입했던걸로 기억합니다. 결과물을 찍어내는지는 잘 모르겠지만(...)
13/10/17 17:40
캐스트롤 랭킹이 그런 식으로 구해집니다. 정확히는 경기장에 카메라가 여러 군데에서 입체적으로 바라보고 있으므로 이 영상 데이터를 바탕으로 선수와 공의 움직임을 추적하는 것이죠.
13/10/17 17:37
제가 개인적으로 시도하고 있는 프로젝트와도 연관이 있는데요
메이메이킹 시스템인 trueskill 랭킹 시스템을 축구에 도입하는 겁니다. 데이터가 축적되면 어떤 두 팀이 맞붙을 때 각자 승리확률이 얼마나 되는지 상당히 정확하게 구할 수 있겠죠. 저는 이걸 조금 수정하면 가장 가능성이 높은 점수차 같은 것도 계산할 수 있을 것으로 기대하고 있습니다. ... 프로토야 기다려야 하핫
13/10/17 21:25
상성의 문제라던가, 강팀에게 강하고 약팀에게 약한 의적풀 같은 팀의 존재나, 각 대회별 동기부여의 차이라던가, 전력에 변화가 왔을 때 그게 랭킹에 적용되는 속도의 문제가 있기는 하겠습니다만 흥미롭네요
13/10/17 21:28
그런 거는 그냥 그 팀이 uncertainty가 높게 되겠죠.
대회별 동기부여 차이는 솔직히 선수들의 경기력에 큰 영향을 주지 않으리라고 봅니다. 엔트리에는 영향을 주겠지만 그렇다고 선수들이 설렁설렁 뛰지 않으니까요. 그래서 trueskill을 선수를 unit으로 돌리면 될 것 같다는 생각입니다.
13/10/17 17:38
1:1, 턴 베이스, 많은 부분이 디지털 (아웃 카운트, 루)이자 순차적인 야구 에 비해서 축구는 다대 다, 리얼타임에다 아날로그적이고.. 랜덤 억세스에 가까우니 어렵긴 하지만 결국 발전하겠죠.. 저도 레지엔님 말씀대로 일단 공에 RF 태깅이라도 해야... 태깅 안해도 카메라로도 되긴 하겠습니다만.
13/10/17 17:53
이미 숱한 팀 전술과 개인 전술에 대한 접근만으로도 충분하다고 봅니.....
는 농담이고 이러한 접근 방식은 개인적으로 첨 접해서 열심히 본문과 링크글 숙독중입니다. 감사합니다~
13/10/17 17:41
일부 프로구단들은 연습 혹은 비공식 경기에서 선수들이 센서를 달고 뛰거나... 아니면 카메라로 경기장 전체가 한 눈에 보이게 경기를 촬영한 다음 선수들 하나하나 트래킹해서 데이터화 한 다음 전술 짜기도 하더군요.
관련한 전문 회사가 있습니다. 외국 회사인데 아마 영국회사였고 럭비 전술분석회사였는데 요즘은 축구, 하키, 농구도 다루더군요. 이름을 까먹었은데...어쨌든 해당 솔루션을 K리그에서도 몇군데 사용하고 있을겁니다. 외국은 말할것도 없고요.
13/10/17 17:48
http://treer.net/bbs/board.php?bo_table=freeboard&wr_id=25772
프로존이었나보네요. 참고할만한 글입니다.
13/10/17 17:48
저 월드컵 베스트는 단일 대회 평점을 기준으로 선별되었기 때문에 그렇다고 봅니다. 월드컵에서의 <누적 활약>으로 놓고 보면 펠레가 당연히 들어가야겠지만, 단일 대회 활약으로 놓고 보면 펠레보다 위라고 할 선수가 꽤나 많거든요. 펠레가 잘한 월드컵이라면 58월드컵과 70월드컵인데, 58월드컵 때는 3경기 밖에 못 뛰어서 아무래도 평점에서는 많이 불리할 테고, 70월드컵 때는 브라질이 누구 한 명에게 의존하는 팀이 아니라 한 명 한 명(자이르지뉴, 히베우리뉴, 지르송, 펠레, 또스따우, 카를루스 아우베르투, 클루두아우두 모두 하나하나 비중이 일정 수준 이상이었죠.)이 에이스 급인 팀이었기 때문에 펠레가 독보적인 고평점을 기록하긴 어려웠을 것 같습니다. 2012-13 시즌 최고의 팀은 바이언이지만, 리베리/로벤/람/슈바인슈타이거/뮐러/크로스/만주키치/알라바/단테 등이 고루고루 잘해서 두드러진 The man이 없던 것과 비슷합니다.
13/10/17 17:45
나중에 수치화 작업이 많이 발전한다고 해도 '축구는 스탯으로 나타낼 수 있는 것이 아니다' 라는 말은 여전히 유효할 듯 싶습니다. 축구는 전술적 이론이 너무나도 복잡하고, 비가 오나 눈이 오나 폭염으로 잔디가죽나 언제나 진행되는 경기인만큼 변수가 많기 때문이지요. 선수의 능력과 감독의 지시 이외에도 순전히 운으로 이루어지는 경우도 많구요.
제 느낌입니다만 먼 훗날에도 '임팩트'와 '포스'가 입에 오르내릴 듯 합니다.
13/10/17 20:21
그건 뭐 세이버가 가장 많이 발달된 야구에서도 아직 나오는 이야기니까 당연하구요.
그래도 없는 것돠는 천지차이죠. 축구에도 빌리 빈이 나올거라고 봅니다. 패러다임은 거부할 수 없을거라고 봐요.
13/10/17 17:53
제가 선수생활을 했던 종목 등의 개인종목은 대부분 이론은 쉽고 명확한데 몸으로 그것을 구현해 내기가어렵습니다. 그런데 축구는 이론도 어렵고 복잡하고 그것을 실행에 옮기기도 복잡하며 팀 케미스트리가 매우중요한 스포츠이고 감독과 선수의 관계 또한 변수가 매우 많은 스포츠라서..글쎄요. 분석이 잘 이루어진다면 팬의 입장에서는 좋겠지만..
13/10/17 20:22
팬은 물론이고 선수와 코치에게 모두 좋을 겁니다. 야구로 치면 클래식 스탯 안좋았던 선수에게 계속 클래식 스탯 올리라고 주문할 게 아니라, 세이버 상의 특장점을 찾아내서 활용도를 발견하게 되죠.
음... 반대로 클래식 스탯만 좋던 선수는 연봉 먹튀를 못하게 되겠지만.. -_-;;
13/10/17 17:57
선수 평가의 한 종류로는 사용가능하겠지만, 야구처럼 스탯을 통해 선수를 평가할 수 있을 것 같지는 않습니다. 변수도 워낙 많고, 실시간으로 변화하기 때문에요.
최근에는 여러 곳에서 이와 같은 움직임을 보여주고 있어서 어떤 선수인지 간략히 알고싶을 때 참고하기는 참 좋네요.
13/10/17 18:18
링크 감사합니다. 요즘 제가 하고 있는 일이랑 비슷해서 재밌네요.
작년인가 재작년부터 맨시티와 함께 하는 옵타프로에서 1경기 축구 선수들 데이터를 전부 (매 초 단위 위치까지) 공개해서 data science를 중흥시키려는 노력 때문에 리서치 하는 쪽에서도 관심이 많습니다. 패스 네트웍을 만들고 각 네트웍 특성을 연구하는 것부터 선수들의 퍼포먼스를 그로부터 계산하는 등 다양한 시도들이 많네요. mit sloan sports conference나 이번에 영국에서 축구 관련 사람들만 모아서 invitation으로 웍샵 하나한다고 하던데 :) 가게 되면 정보 공유 해볼께요 흐흐
13/10/17 18:20
오 말씀만 들어도 흥미롭네요. 기대하겠습니다.
사실 요즘 생각해본 게 과거 선수들에 대한 초단위 액션 분석이었거든요. 가령 1996-97 시즌 CWC 결승전을 보고서 호나우두의 볼터치, 패스, 드리블 등을 집계해본다거나, 1982년 월드컵 4강전에서의 플라티니의 킬패스 숫자를 추려본다거나...생각만 하고 귀찮고 바빠서 아직 안 하고 있습니다만.;
13/12/18 03:04
http://www.optasportspro.com/about/optapro-blog/posts/2013/news-the-optapro-analytics-forum-presenter-line-up-announced.aspx
저희 프로포절 붙었어요! 2월에 갑니다 크크크크크크 (>_<)
13/10/17 18:22
요즘 야구에서 수비실력을 수치화 하기 위해 필드에 나온 10댓명의 사람과 공을 트랙하는 카메라를 설치해 이것저것 해보고 있습니다.
그 수가 두배이긴 하지만 축구도 어므정도까지는 수치화가 가는할것같네요.. 다만 돈이.. 무지하게 깨지겠죠?
13/10/17 19:16
천조국의 MLS에서 아디다스와 손잡고 훈련 및 경기에 대해서 스마트 사커 시스템을 도입해서 활용하고 있는걸로 기억합니다. 이것도 안찾아봐서 어떻게 굴러가고 있는지는 모르겠지만 마이코치였던거 같은데... 심장박동이랑 기타 여려가지를 측정해서 산책하는지 오버페이스인지도 알아낼 수 있다는 뉘앙스의 소개가 인상 깊었습니다(...) 이런 데이터가 공개될지는 모르겠지만 트래킹 거리 등 기본적인 몇가지(현재 스탯존이나 Squawka에서 제공되는거 이상의=_=;;)만 풀어줘도 축구를 보는데 도움이 되지 않을까 싶네요.
어쨌건 결론은 돈(...)
13/10/17 19:31
예전에는 축구에서도 본격적인 스탯질이 시작되면 축구의 출루율은 점유율이 되고 차비 에르난데스는 스캇 해티버그, 자니 데이먼은 화려한 개인기를 가졌지만 크로스, 슛, 패스 성공률이 떨어지는 어느 공격수가 되지 않을까 라고 생각 했었습니다. 그러다가 안전지역에서의 점유, 위험지역에서의 점유의 가치가 구해지고 하면서 어느정도 조정이 들어가고 하는 상상을 했었는데 NBA 스탯 발전 과정을 보면서 이제는 완성되어서 가공된 자료로 처음부터 배포되겠구나 싶네요.
그리고 야구야 스탯질해도 이젠 완전 비주류는 아니니 미국 세이버 유료 사이트들 돈내서 보고 하는데 농구는 스탯 얘기 하면 기록지만 보고 아는채 하려는 재수없는 인간 취급이 너무 심하고 축구도 그럴까봐 아직까지 돈내고 볼 열정은 안생기네요. 물론 어느정도 자료가 쌓이기 시작하면 또 냉큼 호갱질 하겠지만요.
13/10/17 22:38
빌리빈이 머니볼 하면서 찐따취급받던 세이버매트릭스를 주류로 올리기 전까지, 근 30년을 말씀하신 농구같은 취급을 받았죠.
누군가 농구에서 그걸로 패러다임을 바꾸면, 흐름에 뒤쳐지지 않기 위해 따라오고, 그때부터 시작일겁니다. 보스턴 레드삭스같은 돈많고 명문팀이 우승한번 하려고 빌 제임스를 자리에 앉히는것 처럼 말이죠.
13/10/17 20:30
최근에 하루웬종일 롤하고 롤보고 롤생각하는 생활을 하면서, 또 어머님이 구기종목에서 지역대표~국가대표 백업을 왔다갔다 한 입장에서는,
스포츠에서의 통계는 보는 눈이 없는 사람이 실제 평가에 근접할 수 있게 도와주는 것일뿐 실제 평가용으로 쓰여서는 안되는 것이라고 봅니다. 학술에서의 위키백과와 같은 위치라고 해야할까요.
13/10/17 20:47
그야 통계적인 접근이 완벽하지는 않고, 이런저런 제한점이 있는 것이야 불문가지겠습니다만, 야구 같은 경우 이미 실제 평가용 - 통계를 통해 선수 가치를 측량하고 선수 영입 전략을 짜고 연봉 협상에도 반영하고 하니까요 - 으로 쓰고 있다는 점에서 여러 모로 귀감이 된다고 봅니다. 이스트우드의 <내 인생의 마지막 변화구> 같은 영화에서도 통계적 방법에 밀려나는 스카우터들의 어려움을 이야기 한 바 있고..
13/10/17 21:23
연봉 협상이든 선수 영입이든 결국에는 종목을 모르는 사람(프로 기준)에게까지 보고를 해야하니 할 수 없이 통계가 도입되는 걸로 저는 생각합니다만.. 뭐 통계가 자리를 넓히는 현상은 앞으로 더 늘어나겠지요
13/11/15 15:33
저는 보는눈이 있는사람또한 통계의 도움을받아
더 편견을 배제하고 선수를 평가할수있을거라고 봅니다 사람의 눈이란 좀더 멋져보이는것 잘생긴것에도 쉽게 영향을 받지요 보는 눈이 있는사람들도 쉽게 빠질수있는 함정들이죠 그들의 경험도 통계치를 참조하며 충분히 더 정확하고 발전적인 방향으로 사용이 가능할거라고 생각합니다.
13/10/17 22:28
제목의 답이라면 일단 가능할거라 봅니다.
역시 이부분의 갑은 야구겠죠. 세이버매트리션들은 본문에 언급된 투수와 타자의 1:1 일기토를 넘어 직관의 영역인 수비까지 어느정도 수치화하는데 성공합니다. 최초 단순히 야수에게 오는 공을 얼마나 처리하냐로 시작한 레인지팩터(축구 골키퍼의 선방률에 근접한 개념이죠). 레인지팩터의 오류를 개정한 ZR, ZR의 오차를 더 개정한 UZR까지. 수비관련 세이버매트릭스는 오늘도 한단계씩 발달하고 있습니다. UZR을 구하는법은, 야구장을 64파트로 세분화하여 나누고 야수의 커버범위를 정량화 하는겁니다. 많은 카메라와 많은 인력이 그것을 가능하게 했습니다. 하지만, 위에서도 말했듯 투수-타자의 깔끔한 일기토가 아닌 직관의 영역에 도전하는 부분이기 때문에, 아직도 완벽한 정확성까지는 도달하지 못했습니다. 그래도 과거 ZR, 더 과거 RF 시절보단 나아졌다 볼 수 있죠. 이런 관점을 축구에도 가져올 수 있을겁니다. 그래서 가능하다 봅니다. 다만 축구는 태생적인 한계. 1년에 몇경기 치뤄지지 않는다는 특징이 있습니다. 야구가 통계의 스포츠인건, 많은 샘플을 추출할 수 있기 때문입니다. 샘플이 많으면 하나의 값으로 회귀시킬 수 있고, 세이버매트릭스처럼 다양한 시각의 결과값을 도출할 수 있는 반면, 샘플이 적으면 Linear 한 데이터를 뽑을 수 없고, 값의 하나하나가 오차가 크게 작용합니다. 이를 어떻게 극복하냐가 얼마나 빠른시기에 축구를 수량화 할 수 있을까의 답이라 봅니다. 불가능하진 않지만, 매우 오래걸릴것이다. 가 저의 답입니다.
13/10/17 22:44
그죠. 일단 축구는 한 선수가 1년에 경기를 정말 혹사수준으로 많이 해봐야 80경기 이하고, 그나마도 국가단위 리그/국가 단위 컵/대륙단위 클럽 대항전/국가대항전으로 파편화 되어 있다보니 바이아스가 많이 개입하죠. 메이져리그나 NBA처럼 단일리그가 구축되고, 1년에 수십 경기가 가능해질 정도로 축구가 덜 힘들어지지 않는 한은 영원한 장애요소긴 할 겁니다.
13/10/18 00:58
좋은 글 감사합니다.
최근 통계 축구에 대해 어렴풋이 관심이 생겼는데 공교롭게도 이런 좋은 글이 올라와서 반가운 마음으로 읽었네요 흐흐
13/11/15 15:27
축구가 통계분석하기가 다른 스포츠보다 힘든건 분명하지만(공/수/포제션 나누기 불명확)
스포츠적특징뿐만아니라 축구가 미국에서 인기가 없는것도 한목하지 않나싶어요 통계의 왕국인 미국이 관심이없는 종목이다보니 확실히 더딘건 분명한거같아요 돈과 시간을 때려박는다면 축구또한 분석의 수준이 상당히 세밀해질수있겠죠
13/11/15 16:32
야구의 수비도 비슷한 맥락에서 통계를 잡기 어렵지만, 신뢰성이 공격스텟에 비해서 떨어지건말건 어찌됬든 끊임없이 계량화하려는 노력을 하고 있죠.
이건 야구가 공격에서 통계가 나오다보니 수비로도 자연스럽게 시선이 돌아간 결과가 아닌가 싶긴 합니다만.. 마찬가지로 축구에서도 OPS처럼 최소한의 공신력은 있으면서 구하기도 짱 쉬운 통계가 하나 나와준다면 그것을 바탕으로 다른 통계들이 우후죽순 쏟아질수도 있겠죠.
13/12/03 15:59
와. 어렵지만 재밌게 봤습니다.
2002년 월드컵, Best 11에 한국 선수가 두명이네요. 골키퍼에서 칸을 제치고, 이운재!!!! 그리고 수비수에 최진철!!!!
|